Triangular Arbitrage

1. Doug Bernard specializes in cross-rate arbitrage. He notices the following quotes:

Swiss franc/U.S dollar $=$ SFr 1.5971/\$
Australian dollar/U.S. dollar $=\mathrm{A} \$ 1.8215 / \$$
Australian dollar/Swiss franc $=\mathrm{A} \$ 1.1440 / \mathrm{SFr}$

- Ignoring transaction costs, does Doug Bernard have an arbitrage opportunity based on these quotes?
- If there is an arbitrage opportunity, what steps would he take to make an arbitrage profit, and how would he profit if he has $\$ 1,000,000$ available for this purpose.

Abstract

Answer A.

The implicit cross-rate between Australian dollars and Swiss franc is A $\$ / \mathrm{SFr}=\mathrm{A} \$ / \$ \mathrm{x}$ $\$ / \mathrm{SFr}=(\mathrm{A} \$ / \$) /(\mathrm{SFr} / \$)=1.8215 / 1.5971=1.1405$. However, the quoted cross-rate is higher at A\$1.1.1440/SFr.

So, triangular arbitrage is possible.
B.

In the quoted cross-rate of $\mathrm{A} \$ 1.1440 / \mathrm{SFr}$, one Swiss franc is worth $\mathrm{A} \$ 1.1440$, whereas the cross-ratebased on the direct rates implies that one Swiss franc is worth A\$1.1405. Thus, the Swiss franc is overvalued relative to the $\mathrm{A} \$$ in the quoted cross-rate, and Doug Bernard's strategy for triangular arbitrage should be based on selling Swiss francs to buy $\mathrm{A} \$$ as per the quoted cross-rate. Accordingly, the steps Doug Bernard would take for an arbitrage profit is as follows:
i. Sell dollars to get Swiss francs: Sell $\$ 1,000,000$ to get $\$ 1,000,000 \times$ SFr1.5971/ $\$=$ SFr1,597,100.
ii. Sell Swiss francs to buy Australian dollars: Sell SFr1,597,100 to buy SFr1,597,100 x $\mathrm{A} \$ 1.1440 / \mathrm{SFr}=\mathrm{A} \$ 1,827,082.40$.
iii. Sell Australian dollars for dollars: Sell A\$1,827,082.40 for $\mathrm{A} \$ 1,827,082.40 / \mathrm{A} \$ 1.8215 / \$=$
\$1,003,064.73.
Thus, your arbitrage profit is $\$ 1,003,064.73-\$ 1,000,000=\$ 3,064.73$.
2. Assume you are a trader with Deutsche Bank. From the quote screen on your computer terminal, you notice that Dresdner Bank is quoting $€ 0.7627 / \$ 1.00$ and Credit Suisse is offering SF1.1806/\$1.00. You learn that UBS is making a direct market between the Swiss franc and the euro, with a current $€ /$ SF quote of .6395 . Show how you can make a triangular arbitrage profit by trading at these prices. (Ignore bid-ask spreads for this problem.) Assume you have $\$ 5,000,000$ with which to conduct the arbitrage.

What happens if you initially sell dollars for Swiss francs? What $€ /$ SF price will eliminate triangular arbitrage?

Abstract

Answer To make a triangular arbitrage profit the Deutsche Bank trader would sell $\$ 5,000,000$ to Dresdner Bank at $€ 0.7627 / \$ 1.00$. This trade would yield $€ 3,813,500=\$ 5,000,000 \mathrm{x}$.7627. The Deutsche Bank trader would then sell the euros for Swiss francs to Union Bank of Switzerland at a price of $€ 0.6395 / \mathrm{SF} 1.00$, yielding $\mathrm{SF} 5,963,253=$ $€ 3,813,500 / .6395$. The Deutsche Bank trader will resell the Swiss francs to Credit Suisse for $\$ 5,051,036=$ SF5,963,253/1.1806, yielding a triangular arbitrage profit of $\$ 51,036$. If the Deutsche Bank trader initially sold $\$ 5,000,000$ for Swiss francs, instead of euros, the trade

would yield SF5, $903,000=\$ 5,000,000 \times 1.1806$. The Swiss francs would in turn be traded for euros to UBS for $€ 3,774,969=$ SF5, $903,000 \times \mathrm{x} .6395$. The euros would be resold to Dresdner Bank for $\$ 4,949,481=€ 3,774,969 / .7627$, or a loss of $\$ 50,519$. Thus, it is necessary to conduct the triangular arbitrage in the correct order.

The $S(€ / S F)$ cross exchange rate should be $.7627 / 1.1806=.6460$. This is an equilibrium rate at which a triangular arbitrage profit will not exist. (The student can determine this for himself.) A profit results from the triangular arbitrage when dollars are first sold for euros because Swiss francs are purchased for euros at too low a rate in comparison to the equilibrium cross-rate, i.e., Swiss francs are purchased for only $€ 0.6395 /$ SF1. 00 instead of the no-arbitrage rate of $€ 0.6460 /$ SF1.00. Similarly, when dollars are first sold for Swiss francs, an arbitrage loss results because Swiss francs are sold for euros at too low a rate, resulting in too few euros. That is, each Swiss franc is sold for $€ 0.6395 / \mathrm{SF} 1.00$ instead of the higher no-arbitrage rate of $€ 0.6460 / \mathrm{SF} 1.00$.
3. Suppose we have the following data:
$\mathrm{iJPY}=1 \%$ for 1 year ($\mathrm{T}=1$ year)
$\mathrm{iBRL}=10 \%$ for 1 year ($\mathrm{T}=1$ year)
$\mathrm{S}=.025 \mathrm{BRL} / \mathrm{JPY}$

We construct the following strategy, called carry trade, to "profit" from the interest rate differential:

Today, at time $\mathrm{t}=0$, we do the following (1)-(3) transactions:
(i) Borrow JPY 1,000 at 1% for 1 year. (At T=1 year, we will need to repay JPY 1,010 .)
(ii) Convert to BRL at $\mathrm{S}=.025 \mathrm{BRL} / \mathrm{JPY}$. Get BRL 25 .
(iii) Deposit BRL 25 at 10% for 1 year. (At $\mathrm{T}=1$ year, we will receive BRL 27.50.)

Now, we wait 1 year. At time T=1 year, we do the final step:
(iv) Exchange BRL 27.50 for JPY at ST

If $\mathrm{St}+\mathrm{T}=.022$ BRL/JPY, we will receive JPY 1250, for a profit of JPY 240.

- If $\mathrm{St}+\mathrm{T}=.025 \mathrm{BRL} / \mathrm{JPY}$, we will receive JPY 1100, for a profit of JPY 90.
- If St+T = . 027 BRL/JPY, we will receive JPY 1019, for a profit of JPY 9.
- If $\mathrm{St}+\mathrm{T}=.030 \mathrm{BRL} / \mathrm{JPY}$, we will receive JPY 916, for a profit of JPY -74.

