PROBLEM1

Let $[a, b]$ be a basis of R^{2},and let $\alpha \in R, \beta \in R$ be two real numbers. For which values of α, β is $[a+b, \alpha a]$ a basis of R^{2} ? For which values of α, β is $[\alpha a, \beta b]$ a basis of R^{2} ?

Answers: $\alpha \neq 0, \beta \neq 0$

PROBLEM2

Consider the following subset of R^{5}

$$
\begin{equation*}
W=\left\{x \in R^{5}: x_{1}-x_{3}-x_{5}=0\right\} \tag{1}
\end{equation*}
$$

1.show that W is closed under linear combinations, hence a subspace of R^{5}
2.Find a linear map $R^{5} \xrightarrow{T} R^{5}$ such that $W=$ nullspace (T).Can this linear map T be one-to-one? onto?
3.Find a linear map $R^{5} \xrightarrow{T} R^{5}$ such that $W=\operatorname{Range}(T)$.Can this linear map T be one-to-one? onto?
4. Find a basis of W

Answers:

A basis of W is $\beta=\left[e_{2}, e_{1}+e_{3}, e_{4}, e_{1}+e_{5}\right]$. It extends to a basis $\gamma=\beta \bigcup\left\{e_{1}\right\}$.
A linear map with $W=\operatorname{range}(T)$ is defined by $T\left(e_{1}\right)=0, T(x)=x, \forall x \in \beta$.No such map can be one-to-one, hence by the dimension theorem it cannot be onto either.

A linear map with $W=\operatorname{nullspace}(T)$ is defined by $T\left(e_{1}\right)=e_{1}, T(x)=0, \forall x \in \beta$.No such map can be onto, hence by the dimension theorem it cannot be one-to-one either.

PROBLEM3

Consider the following subset of R^{5}

$$
\begin{equation*}
A=\left\{x \in R^{5}: x_{2}-x_{5}=4\right\} \tag{2}
\end{equation*}
$$

1.show that A is closed under affine combinations, hence a flat in R^{5}.Is it a hyperplane?
2.Find an affine map $R^{5} \xrightarrow{T} R^{5}$ such that $A=$ nullspace(T).Can this affine map T be one-to-one? onto?
3.Find an affine map $R^{5} \xrightarrow{T} R^{5}$ such that $A=\operatorname{Range}(T)$.Can this affine map T be one-to-one? onto?

Answers

1.A is a hyperplane because it is defined by a single linear equation
2.choose any element of A , say $b=4 e_{2}$.The subspace uniquely defined by the hyperplane A is $W=A-b=\left\{x \in R^{5}: x_{2}=x_{5}\right\}$. A basis of W is $\beta=\left[e_{1}, e_{2}+e_{5}, e_{3}, e_{4}\right]$, and $\gamma=\beta \bigcup\left\{e_{2}\right\}$ is a basis of R^{5} extending β.The linear map $R^{5} \xrightarrow{L} R^{5}$ uniquely defined by $L\left(e_{2}\right)=e_{2}, L(x)=0, \forall x \in \beta$ satisfies $W=$ nullspace (L).The affine map $R^{5} \xrightarrow{T} R^{5}, T(x)=L(x)-L(b)=L(x)-b$ satisfies $A=$ nullspace (T),because $T(x)=0 \Leftrightarrow x-b \in \operatorname{nullspace}(L)=W \Leftrightarrow x \in A$.

For any affine map $R^{5} \xrightarrow{F} R^{5}, F(x)=M(x)+c, M$ linear, that satisfies $A=\operatorname{nullspace}(F)$, we have $F\left(4 e_{2}\right)=0=F\left(5 e_{2}+e_{5}\right)$, hence F , and M , cannot be one-to-one. By the dimension theorem M cannot be onto, hence F cannot be onto either.
3. The linear map $R^{5} \xrightarrow{L} R^{5}$ uniquely defined by $L\left(e_{2}\right)=0, L(x)=x, \forall x \in \beta$ satisfies $W=\operatorname{range}(L)$.The affine map $R^{5} \xrightarrow{T} R^{5}, T(x)=L(x)+b$ satisfies $A=\operatorname{range}(T)$,because $y=T(x) \Leftrightarrow y=b+L(x) \in b+W=A$.

By the same reasoning, no such affine map can be either one to one or onto

PROBLEM4

Consider the following subset of R^{5}

$$
\begin{equation*}
C=\left\{x \in R^{5}: x_{2}-x_{5} \geq 0, x_{1}-x_{2} \leq 0, x_{3} \geq 0\right\} \tag{3}
\end{equation*}
$$

1.show that C is closed under nonnegative linear combinations, hence a convex cone in R^{5}
2.Find a linear map $R^{5} \xrightarrow{T} R^{5}$ such that $C=\left\{x \in R^{5}: T(x) \geq 0\right\}$. Can this linear map T be one-to-one? onto?
3.show that C is an intersection of half-spaces through the origin. D escribe these halfspaces explicitly

Answers: one such map is $R^{5} \xrightarrow{T} R^{5}$ given by

$$
\begin{equation*}
T(x)=\left[x_{2}-x_{5}, x_{2}-x_{1}, x_{3}, 0,0\right] \tag{4}
\end{equation*}
$$

The vectors $x_{t}=[t, t, 0,0, t]=t\left(e_{1}+e_{2}+e_{5}\right)$ belong to C for all t . Hence any linear map T that satisfies $C=\left\{x \in R^{5}: T(x) \geq 0\right\}$ must also satisfy

$$
\begin{equation*}
t T\left(e_{1}+e_{2}+e_{5}\right) \geq 0, \forall t \in R \tag{5}
\end{equation*}
$$

Inequality (5) for $t=1$ yields

$$
\begin{equation*}
T\left(e_{1}+e_{2}+e_{5}\right) \geq 0 \tag{6}
\end{equation*}
$$

Inequality (5) for $\mathrm{t}=-1$ yields

$$
\begin{equation*}
T\left(e_{1}+e_{2}+e_{5}\right) \leq 0 \tag{7}
\end{equation*}
$$

By (6) and (7)

$$
\begin{equation*}
T\left(e_{1}+e_{2}+e_{5}\right)=0=T(0) \tag{8}
\end{equation*}
$$

Hence any linear map T that satisfies $C=\left\{x \in R^{5}: T(x) \geq 0\right\}$ cannot be either one to one or onto.

PROBLEM5

Consider the following subset of R^{4}

$$
\begin{equation*}
C=\left\{x \in R^{4}: x_{2}-x_{4} \geq 6, x_{1}-x_{2}-x_{3} \leq 7, x_{3} \geq 0\right\} \tag{9}
\end{equation*}
$$

1.show that C is closed under convex combinations, hence a convex set in R^{5}
2.Find an affine map $R^{4} \xrightarrow{T} R^{4}$ such that $C=\left\{x \in R^{4}: T(x) \geq 0\right\}$.Can this affine map T be one-to-one? onto?
3.show that C is an intersection of half-spaces. Describe these half-spaces explicitly

Answers: one such map is $R^{4} \xrightarrow{T} R^{4}$ given by

$$
\begin{align*}
& T(x)=L(x)-b \\
& L(x)=\left[x_{2}-x_{4}, x_{2}+x_{3}-x_{1}, x_{3}, 0\right] \tag{10}\\
& b=[6,-7,0,0]
\end{align*}
$$

The vectors $x_{t}=t\left(e_{1}+e_{2}+e_{4}\right)+w, t \in R, w=[13,6,0,0]$ belong to C for all t . Hence any affine map $T^{\prime}(x)=L^{\prime}(x)-b^{\prime}$ that satisfies $C=\left\{x \in R^{5}: T^{\prime}(x) \geq 0\right\}$ must also satisfy $T^{\prime}\left(x_{t}\right) \geq 0, \forall t \in R$, hence $L^{\prime}\left(t\left(e_{1}+e_{2}+e_{4}\right)+w\right)-b^{\prime} \geq 0, \forall t \in R$

$$
\begin{equation*}
t L^{\prime}\left(e_{1}+e_{2}+e_{4}\right) \geq b^{\prime}-L^{\prime}(w), \forall t \in R \tag{11}
\end{equation*}
$$

By (11) we obtain

$$
\begin{align*}
& L^{\prime}\left(e_{1}+e_{2}+e_{4}\right) \geq \frac{b^{\prime}-L^{\prime}(w)}{t}, \forall t>0 \tag{12}\\
& L^{\prime}\left(e_{1}+e_{2}+e_{4}\right) \leq \frac{b^{\prime}-L^{\prime}(w)}{t}, \forall t<0 \tag{13}
\end{align*}
$$

By (12),(13)

$$
\begin{equation*}
L^{\prime}\left(e_{1}+e_{2}+e_{4}\right)=0=L^{\prime}(0) \tag{14}
\end{equation*}
$$

Hence L^{\prime}, T^{\prime} cannot be either one to one or onto.

PROBLEM6

For each one of the following functions f,and for each value of the real parameter C , compute and draw their better-than sets $B_{c}^{f}=\left\{(x, y) \in R_{+}^{2}: f(x, y) \geq c\right\}$; state whether they are quasi-concave functions on R_{+}^{2}, or concave functions on R_{+}^{2}

- $\quad f(x, y)=x+\sqrt{y}, c=4 ; \mathrm{f}$ is concave

- $\quad f(x, y)=x+y^{2}, c=4 ; \mathrm{f}$ is not quasi-concave

- $f(x, y)=x-\frac{1}{y}, c=4$; f is concave

- $\quad f(x, y)=\min (x, y), c=1$; f is concave

- $\quad f(x, y)=\max (x, y), c=1$; f is not quasi-concave

- $\quad f(x, y)=\min (x / 4+1, y+2), c=3$; f is concave

- $f(x, y)=\max (2 x / 3,3 y / 2), c=1$; f is not quasi-concave

- $\quad f(x, y)=\min (x / 4+y-1, x+y-2, x, y), c=1 / 2,2,4$; f is concave

- $\quad f(x, y)=\min \left(x, y, \frac{x^{2}+y^{2}}{8}\right), c=1$;f is not quasi-concave

- $\quad f(x, y)=\min (\max (x, y), \max (2 x / 3,3 y / 2)), c=1$; f is not quasi-concave

- $\quad f(x, y)=-(x-3)^{2}-(y-3)^{2}, c=-4 ; f$ is concave

PROBLEM7

Find all global maxima of the following maximization problem, or show that none exist
Objective function $f(x)=3(2 \sqrt{x+1}-2)-9 x$
constraints $x \geq 0$
variables x
answer: $x=0$

PROBLEM8

For all allowed values of the parameters, find all global maxima of the following maximization problem, or show that none exist

Objective function $f\left(x_{1}, x_{2}, x_{3}\right)=x_{1} x_{2} x_{3}-w_{1} x_{1}-w_{2} x_{2}-w_{3} x_{3}$
constraints $x_{1} \geq 0, x_{2} \geq 0, x_{3} \geq 0$
variables x_{1}, x_{2}, x_{3}
parameters w_{1}, w_{2}, w_{3}
conditions on parameters $w_{1}>0, w_{2}>0, w_{3}>0$
answer there is no global maximum, because
$f(t, t, t)=t^{3}-w_{1} t-w_{2} t-w_{3} t \rightarrow \infty$ as $t \rightarrow \infty$

PROBLEM9

For all allowed values of the parameters, find all global maxima of the following maximization problem, or show that none exist

Objective function $f\left(x_{1}, x_{2}\right)=\min \left(\frac{x_{1}}{4}+1, x_{2}+2\right)$
constraints $x_{1}+p x_{2} \leq 4, x_{1} \geq 0, x_{2} \geq 0$
variables $\quad x_{1}, x_{2}$
parameters p.conditions on parameters $p>0$
answer: $x_{1}=4, x_{2}=0$

