Question 1

Derive the profit functions, average cost functions and net supply correspondences of the following firms, and draw their net supply correspondences

$$
\begin{gather*}
Q=\alpha X, \alpha>0 \tag{1}\\
Q=\alpha X^{\frac{1}{2}}, \alpha>0 \tag{2}\\
Q=\alpha X^{2}, \alpha>0 \tag{3}\\
Q=\min \left(X_{1}, \alpha X_{2}\right), \alpha>0 \tag{4}
\end{gather*}
$$

Question 2

Consider the function $R_{++}^{2} \xrightarrow{f} R, f\left(p_{1}, p_{2}\right)=p_{2}-3 p_{1}$

1.is it a profit function?

2. If it is, construct a rationalizing production set for f, and derive the corresponding net supply correspondence

Question 3

Consider the following price-quantity data (two commodities, three observations)

$$
\begin{gather*}
\text { quantity vectors }=\left[\begin{array}{ccc}
1 & 2 & -2 \\
-1 & -3 & 1
\end{array}\right]=\left[y^{1}, y^{2}, y^{3}\right] \tag{5}\\
\text { price vectors }=\left[\begin{array}{ccc}
3 & 4 & 1 \\
3 & 2 & \theta
\end{array}\right]=\left[p^{1}, p^{2}, p^{3}\right] \tag{6}
\end{gather*}
$$

1. For which values of $\theta>0$ do the data satisfy WAPM?
2. Construct and draw the rationalizing production set YO when $\theta=2$.
3. Find the profit maximizing netput vectors of the firms with production sets $Y=\left\{y^{1}, y^{2}, y^{3}\right\}$ and $Y=Y O$ at $p=[4,3]$ when $\theta=2$.
4. Find the profit functions and the net supply correspondences of the firms with production sets $Y=\left\{y^{1}, y^{2}, y^{3}\right\}$ and $Y=Y O$ when $\theta=2$.

Varian

2.3, 2.6, 2.7 3.4, 3.5

MWTT
5.B. 6 5.D. 5 5.AA. 4

