- two goods, A, X
- One consumer
- Two firms,1 and 2

Firm 1 produces good A out of good X with production function

$$
\begin{equation*}
A_{1}=X_{1}, X_{1} \geq 0 \tag{1}
\end{equation*}
$$

where X_{1} is the quantity of good X used as input in the production of good A , and A_{1} is the quantity produced of good A.

Firm 2 produces good A out of good X with technology described by the production function

$$
\begin{equation*}
A_{2}=\frac{2 X_{2}}{1+X_{1}}, X_{2} \geq 0 \tag{2}
\end{equation*}
$$

where X_{2} is the quantity of good X used as input in the production of good A , and A_{2} is the quantity produced of good A .
negative production externality: the production function of firm 2, as defined in (2), is a strictly decreasing function of a variable, namely X_{1}, chosen by firm 1.

Consumer

- Consumption set R_{+}^{2}
- Endowment vector $\omega=\overbrace{[0, \bar{X}]}^{A, X}, \bar{X}>0$
- Ownership shares: $\theta_{1}=1=\theta_{2}$
- Utility function $u\left(A, X, A_{1}, X_{1}, A_{2}, X_{2}\right)=A X$
where X is the quantity consumed of good X, and A is the quantity consumed of good A.
$p=$ price of commodity $\mathrm{A}, w=$ price of commodity X.Normalize $p=1$

2. DEFINE CONSUMER INCOME

$$
\begin{equation*}
M=w \bar{X}+\Pi_{1}+\Pi_{2} \tag{3}
\end{equation*}
$$

3. SOLVE THE OPTIMIZATION PROBLEM OF THE CONSUMER
$\max u=\log (A)+\log (X)$, subject to $A+w X \leq M, A \geq 0, X \geq 0$
Variables: A, X
parameters: w, M
Conditions on parameters: $w>0, M>0$
The solutions are

$$
\begin{equation*}
(A, X)=\left(\frac{M}{2}, \frac{M}{2 w}\right) \tag{4}
\end{equation*}
$$

4.1. SOLVE THE OPTIMIZATION PROBLEM OF FIRM 1

$\max \Pi_{1}=A_{1}-w X_{1}$
subject to $X_{1} \geq 0, A_{1} \geq 0, A_{1}=X_{1}$
Variables: A_{1}, X_{1}
parameters: w
conditions on parameters: $w>0$
The solution is

$$
\left(A_{1}, X_{1}, \Pi_{1}\right)=\left\{\begin{array}{ccc}
\text { NONE } & \text { if } & w<1 \tag{5}\\
\left(X_{1}, X_{1}, 0\right) & \text { if } & w=1 \\
(0,0,0) & \text { if } & w>1
\end{array}\right.
$$

4.2. SOLVE THE OPTIMIZATION PROBLEM OF FIRM 2

$\max \Pi_{2}=A_{2}-w X_{2}$
subject to $A_{2} \geq 0, X_{2} \geq 0, A_{2}=\frac{2 X_{2}}{1+X_{1}}$
Variables: A_{2}, X_{2}
parameters: w, X_{1}
conditions on parameters: $w>0, X_{1} \geq 0$
The solution is

$$
\left(A_{2}, X_{2}, \Pi_{2}\right)=\left\{\begin{array}{ccc}
\text { NONE } & \text { if } & w<\frac{2}{1+X_{1}} \\
\left(\frac{2 X_{2}}{1+X_{1}}, X_{2}, 0\right) & \text { if } & w=\frac{2}{1+X_{1}} \tag{6}\\
(0,0,0) & \text { if } & w>\frac{2}{1+X_{1}}
\end{array}\right.
$$

5. SOLVE THE EQUILIBRIUM CONDITIONS

$$
\begin{gather*}
A=A_{1}+A_{2} \tag{7}\\
X+X_{1}+X_{2}=\bar{X} \tag{8}
\end{gather*}
$$

Search for solutions of the equilibrium equations.
By (6),(5)
all equilibria,if they exist,must satisfy

$$
\begin{equation*}
w \geq 1 \text { and } w \geq \frac{2}{1+X_{1}}, \Pi_{1}=0=\Pi_{2}, M=w \bar{X} \tag{9}
\end{equation*}
$$

Hence, we can restrict the search to the space (9).
Hypothesis 1 (to be accepted or rejected, depending on the outcome of the search):
there is an equilibrium with $\frac{2}{1+X_{1}}<1$,i.e. $X_{1}>1$
Solution 1
Given the hypothesis, the possibilities for w are

By (9),there are no equilibria when $w<1$
By (6),(5),there is no equilibrium with $w>1$,because then
$\left(A_{1}, X_{1}, \Pi_{1}\right)=(0,0,0)=\left(A_{2}, X_{2}, \Pi_{2}\right), A=\frac{w \bar{X}}{2}$
if $w=1$ then $\left(A_{2}, X_{2}, \Pi_{2}\right)=(0,0,0),\left(A_{1}, X_{1}, \Pi_{1}\right)=\left(X_{1}, X_{1}, 0\right), A=X=\frac{\bar{X}}{2}$.Then (8) becomes $X_{1}=\frac{\bar{X}}{2}$,and this is the only candidate equilibrium.

Consistency check 1
$\frac{2}{1+X_{1}}<1$ becomes, at the only candidate equilibrium, $\frac{2}{1+\frac{\bar{X}}{2}}<1$,i.e., $\bar{X}>2$
Conclusion 1: we accept hypothesis 1 iff $\bar{X}>2$. The corresponding equilibrium is

$$
\begin{align*}
& \text { type } 1 \text { competitive equilibrium, it exists iff } \bar{X}>2 \\
& w=1 \\
& \left(A_{2}, X_{2}, \Pi_{2}\right)=(0,0,0) \\
& \left(A_{1}, X_{1}, \Pi_{1}\right)=\left(\frac{\bar{X}}{2}, \frac{\bar{X}}{2}, 0\right) \tag{10}\\
& (A, X)=\left(\frac{\bar{X}}{2}, \frac{\bar{X}}{2}\right) \\
& U_{E Q 1}=\frac{(\bar{X})^{2}}{4}
\end{align*}
$$

We continue the search for equilibria with a new hypothesis
Hypothesis 2 (to be accepted or rejected, depending on the outcome of the search):
there is an equilibrium with $\frac{2}{1+X_{1}}>1$

Solution 2

Given the hypothesis, the possibilities for w are

$$
\frac{2}{1+X_{1}}
$$

By (9), there are no equilibria when $w<\frac{2}{1+X_{1}}$.
By (6),(5),there is no equilibrium with $w>\frac{2}{1+X_{1}}$,because then
$\left(A_{1}, X_{1}, \Pi_{1}\right)=(0,0,0)=\left(A_{2}, X_{2}, \Pi_{2}\right), A=\frac{w \bar{X}}{2}$.
if $w=\frac{2}{1+X_{1}}$ then $\left(A_{2}, X_{2}, \Pi_{2}\right)=\left(2 X_{2}, X_{2}, 0\right),\left(A_{1}, X_{1}, \Pi_{1}\right)=(0,0,0), w=2, A=\bar{X}, X=\frac{\bar{X}}{2}$
Then (8) becomes $X_{2}=\frac{\bar{X}}{2}$,and this is the only candidate equilibrium.
Consistency check 2
$\frac{2}{1+X_{1}}>1$ becomes, at the only candidate equilibrium, $\frac{2}{1+0}>1$, which is always true.
Conclusion 2: we accept hypothesis 2 without qualifications. The corresponding equilibrium is

$$
\begin{align*}
& \begin{array}{l}
\text { type } 2 \text { competitive equilibrium,it exists iff } \bar{X}>0 \\
\left(A_{2}, X_{2}, \Pi_{2}\right)=\left(\bar{X}, \frac{\bar{X}}{2}, 0\right) \\
\left(A_{1}, X_{1}, \Pi_{1}\right)=(0,0,0) \\
(A, X)=\left(\bar{X}, \frac{\bar{X}}{2}\right) \\
U_{E Q 2}=\frac{(\bar{X})^{2}}{2}
\end{array}
\end{align*}
$$

We continue the search for equilibria with a new hypothesis
Hypothesis 3 (to be accepted or rejected, depending on the outcome of the search):
there is an equilibrium with $\frac{2}{1+X_{1}}=1$

Solution 3

Given the hypothesis, $X_{1}=1$, and the possibilities for w are

By (9), there are no equilibria when $w<1$.
By (6),(5),there is no equilibrium with $w>1$,because then
$\left(A_{1}, X_{1}, \Pi_{1}\right)=(0,0,0)=\left(A_{2}, X_{2}, \Pi_{2}\right), A=\frac{w \bar{X}}{2}$
if $w=1$ then $\left(A_{2}, X_{2}, \Pi_{2}\right)=\left(X_{2}, X_{2}, 0\right),\left(A_{1}, X_{1}, \Pi_{1}\right)=(1,1,0), A=X=\frac{\bar{X}}{2}$.Then (8) becomes $1+X_{2}=\frac{\bar{X}}{2}$,and therefore $X_{2}=\frac{\bar{X}-2}{2}$ and this is the only candidate equilibrium.

Consistency check 3
$X_{2}=\frac{\bar{X}-2}{2} \geq 0$ implies $\bar{X} \geq 2$
Conclusion 3: we accept hypothesis 3 iff $\bar{X} \geq 2$ The corresponding equilibrium is

$$
\begin{align*}
& \text { type } 3 \text { competitive equilibrium, it exists iff } \overline{\bar{X} \geq 2} \\
& w=1 \\
& \left(A_{2}, X_{2}, \Pi_{2}\right)=\left(\frac{\bar{X}-2}{2}, \frac{\bar{X}-2}{2}, 0\right) \\
& \left(A_{1}, X_{1}, \Pi_{1}\right)=(1,1,0) \tag{12}\\
& (A, X)=\left(\frac{\bar{X}}{2}, \frac{\bar{X}}{2}\right) \\
& U_{E Q 3}=\frac{(\bar{X})^{2}}{4}
\end{align*}
$$

We end the search for equilibria here since we have exhausted the search space. Comparing (12),(11) and (10) we conclude that , as far as welfare is concerned, there exist in fact only two types of equilibria

low wage competitive equilibrium, it exists iff $\bar{X} \geq 2$ $w=1$
$\left(A_{2}, X_{2}, \Pi_{2}\right)=(0,0,0),\left(A_{1}, X_{1}, \Pi_{1}\right)=\left(\frac{\bar{X}}{2}, \frac{\bar{X}}{2}, 0\right)$ OR $\left(A_{2}, X_{2}, \Pi_{2}\right)=\left(\frac{\bar{X}-2}{2}, \frac{\bar{X}-2}{2}, 0\right),\left(A_{1}, X_{1}, \Pi_{1}\right)=(1,1,0)$ $(A, X)=\left(\frac{\bar{X}}{2}, \frac{\bar{X}}{2}\right)$ $U_{E Q 1}=\frac{(\bar{X})^{2}}{4}$

high wage competitive equilibrium, it exists iff $\bar{X}>0$
$w=2$
$\left(A_{2}, X_{2}, \Pi_{2}\right)=\left(\bar{X}, \frac{\bar{X}}{2}, 0\right)$
$\left(A_{1}, X_{1}, \Pi_{1}\right)=(0,0,0)$
$(A, X)=\left(\bar{X}, \frac{\bar{X}}{2}\right)$
$U_{E Q 2}=\frac{(\bar{X})^{2}}{2}$

Comparing (14) to (13) we observe that there exist two equilibria iff $\bar{X} \geq 2$, and a unique equilibrium iff $0<\bar{X}<2$

To understand the multiplicity of equilibria, we compute and draw the aggregate input demand correspondence $X_{D}=X_{1}+X_{2}$ and net input supply correspondence $\bar{X}-X$.

Computation of the aggregate input demand correspondence $X_{D}=X_{1}+X_{2}$ as a function of w alone

By (5),(6) we obtain

- If $\mathrm{w}<1$ then X_{1}, and therefore X_{D}, are not defined.
- If $1<w<2$ then $X_{1}=0, \frac{2}{1+X_{1}}=2>w$, and therefore X_{2} and X_{D} are not defined.
- If $w>2$ then $w>\frac{2}{1+X_{1}}$ and therefore $X_{D}=0$
- If $w=1$ then $w \geq \frac{2}{1+X_{1}}$ iff $X_{1} \geq 1$ and therefore
$X_{D}=\left\{\begin{array}{cll}1+X_{2}, \text { any } X_{2} \geq 0 & \text { if } & X_{1}=1 \\ (\text { any }) X_{1} & \text { if } & X_{1}>1\end{array}=\right.$ any number ≥ 1
- If $w=2$ then $X_{1}=0, X_{D}=X_{2}=$ any number ≥ 0.

Computation of the aggregate input net supply $X_{S}=\bar{X}-X$ at values of w consistent with (9)

By (3),(9),(4) $X=\frac{\bar{X}}{2}, X_{S}=\frac{\bar{X}}{2}$ at any such w ; when $\mathrm{w}=1$ then X, X_{S} are defined iff $X_{1} \geq 1$

WELFARE COMPARISONS

We compute the best allocations for the consumer, and then compare it to the equilibrium allocations.

```
pareto efficiency problem with one consumer
\(\max U=A X\)
subject to
resource constraints \(A \leq A_{1}+A_{2}, X+X_{1}+X_{2} \leq \bar{X}\)
technology constraints \(A_{1}=X_{1}, A_{2}=\frac{2 X_{2}}{1+X_{1}}, A_{1} \geq 0, A_{2} \geq 0, X_{1} \geq 0, X_{2} \geq 0\)
variables \(A_{1}, A_{2}, X_{1}, X_{2}, A, X\) (the allocation of resources)
parameters \(\bar{X}\)
conditions on parameters \(\bar{X}>0\)
```

$$
\begin{align*}
& \text { Pareto efficient allocation } \\
& \left(A_{1}, X_{1}\right)=(0,0),\left(A_{2}, X_{2}\right)=\left(\bar{X}, \frac{\bar{X}}{2}\right)=(A, X) \tag{16}\\
& U^{M A X}=\frac{(\bar{X})^{2}}{2}
\end{align*}
$$

Comparing the efficient allocation (16) to the equilibrium allocations (13),(14) we observe that the low wage equilibrium is inefficient, while the high wage equilibrium is efficient. For $\bar{X} \geq 2$, this economy has two equilibria that are pareto ranked, in the sense that $U^{M A X}=U_{E Q 2}>U_{E Q 1}$.

