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Aoknon B8.1.
S [pdayTe (0TTWG oTIg dlagaveleg 10—-14) Tig e€lowoelg Tou CNN Tng diagpdveiag 9.
MpoaodiopioTe £TTioNG TIG BIACTACEIG OAWY TWV EPTTAEKOMEVWY TTIVAKWY Kal SIAVUCTUATWV.
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Amdvinon: The dimensionality of the word embeddings is d = 5. We can think of the two
bigram filters as a matrix W® € R?%24 = R2*¥10 and a bias terms vector b = R?
(similarly to slide 12, where we have three bigram filters). Similarly. we can think of the two
trigram filters as a matrix W®) € R2%34 = R2*15 and a bias terms vector b®) = R?; and the
two 4-gram filters as a matrix W®*) € R2*4d = R2%X20 and a bias terms vector b™* = R2.

The embeddings of each bigram of the input text can be thought of as a vector x € R??,
Applying the two bigram filters to the i-th bigram xi(z)of the input text produces:

h® =ReLU (WPxP +b@) eR?,  i=1,..,6

where we assumed that we use ‘narrow convolutions’, i.e.. that the filters do not move out of
the words of the input text (to partially overlap with padding tokens).

AIASTASH h®
Input: n (number of words=7)

Max-pooling over hgz), sl hgz) produces a vector: Padding: p (=0)

Stride: s (=1)

i,

(@) — (2) @\ 2
B = (miax hiy) miaXh g) ER Filter size: f (bi-gram=2)

Output: [(n+2p-f)/s+1]
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s Similarly, applying the two trigram filters to the i-th trigram x;™ € R of the input text and
the two 4-gram filters to the i-th 4-gram xi(4) € R*? produces:

AIAYXTASH h®)
h® = RelU (W®xP +p®)eR?,  i=1,..,5

B = ReLU (W®Wx® + p®) e R?,  i=1,..,4

Input: n (number of words=7)

Padding: p (=0)

Stride: s (=1)

Max-pooling over L h§3) and over hg"’), -y hf') produces: Filter size: f (tri-gram=3)

Output: [(n+2p-f)/s+1

) = 3)
h® = (miax hi,1 :

h™® = (max hg‘;),
l ’

3
max hi(,z))r € R?

max hlg;))T € R?

AIAZTAZH h®

Input: n (number of words=7)

Padding: p (=0)

. . . T
The feature vector of the input text is the concatenation h = [A®; h®); h®]|" € RS.

Stride: s (=1)
We pass on h to a classifier, e.g.. a logistic regression layer, i.c.. a dense layer W®) € RICI*f
with a bias vector b® € RI¢l and a softmax activation function, to obtain a probabilit

distribution o over the classes ¢, ..., Cc] € C:

Filter size: f (4-gram=4)

Output: [(n+2p-f)/s+1]

6 = (P(cy), ...,P(c,cl))T = softmax(W P h + b®))



Aoknon B8.2.
S Consider the following LSTM-based machine translation model (see also exercise 4 of section B6).
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Aoknon B8.2.
We wish to replace the BiLSTM encoder of the model above by the stacked CNN-based encoder with trigram filters illustrated

below, retaining the encoder-decoder attention and the LSTM decoder of the original model.
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Stacked CNN encoder
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5 Aoknon B8.2.

Let V. V' be the vocabularies of the source language (English) and target language (German).
respectively. Each training instance is a pair consisting of (1) a sequence of one-hot vectors:

Xsr X X conees X € §0, 1THI¥

corresponding to an English sentence (each vector shows the position of the corresponding
word in V) and (ii) a sequence of one-hot vectors:

Y1,Y2, Y3 Ym € {0' 1}IV,I

corresponding to a German sentence that is the correct (gold) translation of the English one
(each vector shows the position of the corresponding word in V'). For simplicity, we assume
all the English sentences are n words long, and all the German sentences are m words long.

Let E € RVl and E’ € RA“XIV'I contain the word embeddings of the source and target
language. respectively. Notice that word embeddings have d(®) dimensions in both languages.
and that all the convolution layers of the CNN encoder also use d(® filters.

The following formulae describe how the new model works and how the loss (L) is computed.
given a training instance. Fill in the blanks (they have been filled in in red in the solution).
The notation |...;...]| denotes concatenation and f, g denote activation functions.




Atravinon:

@)

Encoder: (i € {1,2,3,...,n}, | € {2,3,4})

= Ex; € R4 (To embedding ¢ 6OGTNC ayYAKNS AEENG 6T O€0M 7.)

(Assume that ey = e, 44 1s always an all-zeros embedding of the padding token.)

h{Y = ReLU(WD[e;_y; ;5 141] + bD) + ¢; € R4
W(l) € Rd(e)x?"d(e)

b® g R4

i-1 ? i+1

h® = ReLU (WD [n0; h{D; A D]+ b®) + b € Re?
wd e Rd(e)xg.d(c’)
pd) e RA®



Atravinon:

@)

Deécoder: (£ € §1,2,3;...;n}); J €£1L2.3,...,m))

ti=E'y; € R (To embedding ¢ 6OGTIAC YEPUOVIKNG AEENS 6T B0 J.)
X1 : ] d© d®© da®©

zj = LSTM(zj-1, [tj-1;¢]]) € R Zo €RY” .t ER

ayj=v"-fW®[h®; 7| +b@) eR w@ g Ra@x2a®

p@ e RV y e RE?

exp(a ;)

W S s
W Yirexp(@yj)

¢ =g ai,j/1§4) + b(c)) e R4 p© e ra®



Atravinon:

©
8; = W@z + b©@ e RIV'l w© e RrIv'Ixa®
p©@ e rIV'I
exp(0;k) ; 3 5 ; s :
O k (ITéc0o mBavo Be®pel TO LOVTIEAO 1| k-GT1] AEEN TOV YEPUAVIKOV

T2 exp(a;
re&hoyiov va eival ) GOGTI Yo TV j-GT1] BE6T TG LETAPPUCTC.)

r; = argmax; Yj, (Zopgova pe to 1-hot y;. n coct AEEN 6NV j-6T1] BE0M) NG
uetaepacns Ppicketot 6t H£61 757 TOL YEPHOVIKOD Aegiroyiov.)

L=-%jlog j,r; (Eroyiotomot®dvtog 10 L, HEYIGTOTO100E TNV TBavOTITO TOL divel
TO LLOVTEAO GTIC GMGTEC AEEEIC. GE OAEC TIC BEGELS TNG HETAPPAGTS.)



